IPC-HDBK-850

2012 - July

Guidelines for Design, Selection and Application of Potting Materials and Encapsulation Processes Used for Electronics Printed Circuit Board Assembly

A standard developed by IPC

Association Connecting Electronics Industries

This is a preview. Click here to purchase the full publication.

The Principles of Standardization

In May 1995 the IPC's Technical Activities Executive Committee (TAEC) adopted Principles of Standardization as a guiding principle of IPC's standardization efforts.

Standards Should:

- Show relationship to Design for Manufacturability (DFM) and Design for the Environment (DFE)
- Minimize time to market
- Contain simple (simplified) language
- Just include spec information
- Focus on end product performance
- Include a feedback system on use and problems for future improvement

Standards Should Not:

- Inhibit innovation
- Increase time-to-market
- Keep people out
- Increase cycle time
- Tell you how to make something
- Contain anything that cannot be defended with data

Notice

IPC Standards and Publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards and Publications shall not in any respect preclude any member or nonmember of IPC from manufacturing or selling products not conforming to such Standards and Publication, nor shall the existence of such Standards and Publications preclude their voluntary use by those other than IPC members, whether the standard is to be used either domestically or internationally.

Recommended Standards and Publications are adopted by IPC without regard to whether their adoption may involve patents on articles, materials, or processes. By such action, IPC does not assume any liability to any patent owner, nor do they assume any obligation whatever to parties adopting the Recommended Standard or Publication. Users are also wholly responsible for protecting themselves against all claims of liabilities for patent infringement.

IPC Position Statement on Specification Revision Change It is the position of IPC's Technical Activities Executive Committee that the use and implementation of IPC publications is voluntary and is part of a relationship entered into by customer and supplier. When an IPC publication is updated and a new revision is published, it is the opinion of the TAEC that the use of the new revision as part of an existing relationship is not automatic unless required by the contract. The TAEC recommends the use of the latest revision.

Adopted October 6, 1998

Why is there a charge for this document?

Your purchase of this document contributes to the ongoing development of new and updated industry standards and publications. Standards allow manufacturers, customers, and suppliers to understand one another better. Standards allow manufacturers greater efficiencies when they can set up their processes to meet industry standards, allowing them to offer their customers lower costs.

IPC spends hundreds of thousands of dollars annually to support IPC's volunteers in the standards and publications development process. There are many rounds of drafts sent out for review and the committees spend hundreds of hours in review and development. IPC's staff attends and participates in committee activities, typesets and circulates document drafts, and follows all necessary procedures to qualify for ANSI approval.

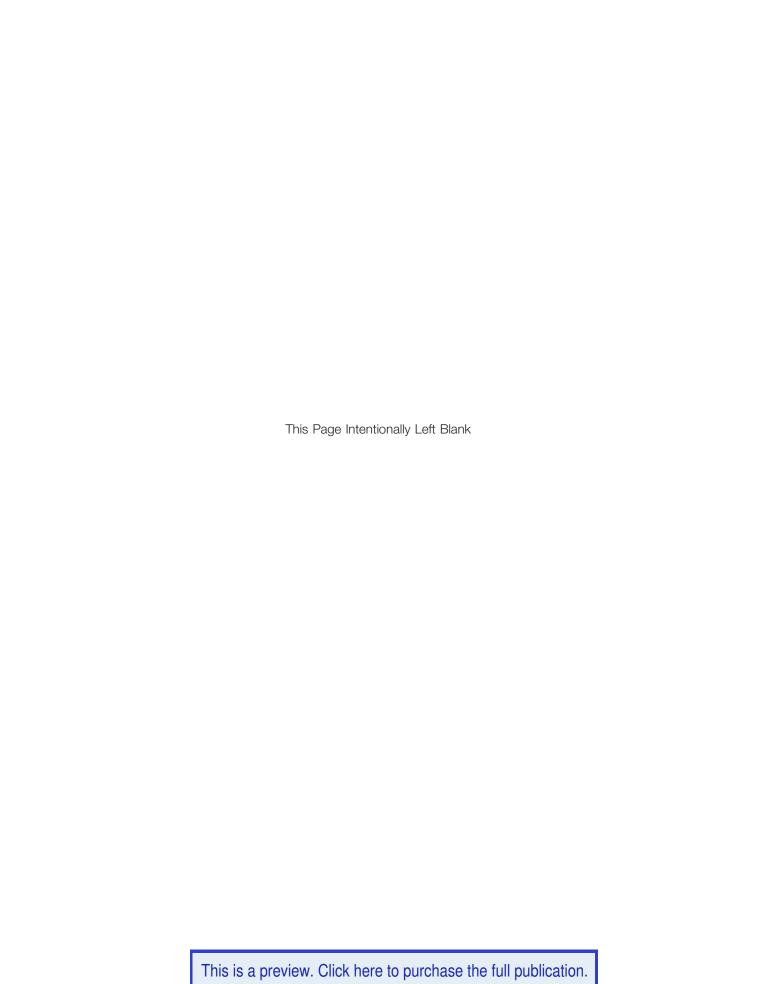
IPC's membership dues have been kept low to allow as many companies as possible to participate. Therefore, the standards and publications revenue is necessary to complement dues revenue. The price schedule offers a 50% discount to IPC members. If your company buys IPC standards and publications, why not take advantage of this and the many other benefits of IPC membership as well? For more information on membership in IPC, please visit www.ipc.org or call 847/597-2872.

Thank you for your continued support.

©Copyright 2012. IPC, Bannockburn, Illinois, USA. All rights reserved under both international and Pan-American copyright conventions. Any copying, scanning or other reproduction of these materials without the prior written consent of the copyright holder is strictly prohibited and constitutes infringement under the Copyright Law of the United States.

IPC-HDBK-850

Guidelines for Design,
Selection and Application
of Potting Materials and
Encapsulation Processes
Used for Electronics
Printed Circuit Board
Assembly


Developed by the Potting and Encapsulation Task Group (5-33f) of the Cleaning and Coating Committee (5-30) of IPC

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 309S Bannockburn, Illinois 60015-1249 Tel 847 615.7100 Fax 847 615.7105

This is a preview. Click here to purchase the full publication.

Acknowledgment

Any document involving a complex technology draws material from a vast number of sources. While the principal members of the Potting and Encapsulation Task Group (5-33f) of the Cleaning and Coating Committee (5-30) are shown below, it is not possible to include all of those who assisted in the evolution of this handbook. To each of them, the members of the IPC extend their gratitude.

Cleaning and Coating Committee	Potting and Encapsulation Task Group	Technical Liaisons of the IPC Board of Directors
Chair Douglas O. Pauls Rockwell Collins	Chair Barry Ritchie Dow Corning Corporation	Dongkai Shangguan Flextronics International
Vice Chair Debora L. Obitz Trace Laboratories - Baltimore	Vice Chair Gordon Sullivan Royal Adhesives & Sealants	Shane Whiteside TTM Technologies

Potting and Encapsulation Task Group

Patrick Redmond, Boeing Company
Jason Keeping, Celestica
Greg Vorhis, Coastal Technical Services
Brian Madsen, Continental Automotive Systems
Stan Rak, Continental Automotive Systems

Karen Tellefsen, Cookson Electronics Anitha Sinkfield, Delphi Electronics and Safety

Carlos Montemayor, Dow Corning Corporation

Barry Ritchie, Dow Corning Corporation

Anne Lomonte, Draeger Medical Systems, Inc.

Jonathan Galaska, Dymax Corporation

Michael Suwe, ELANTAS Beck GmbH

Robert Phelps, ELANTAS PDG, INC.

James Stockhausen, ELANTAS PDG, INC.

Jade Bridges, Electrolube

Amanda Stuart, Electrolube

Arthur Perkowski, Electronic Coating Technologies Inc.

Jeff Labodda, Epic Resins

Jonathon Zarnstorff, Epic Resins

Mike Seluke, EXACT Dispensing Systems by Sheepscot Machine Works

Todd Williams, EXACT Dispensing Systems by Sheepscot Machine Works

Richard Stadem, General Dynamics Advanced Information Systems

David Edwards, Henkel Corporation Jeffrey Sargeant, HumiSeal Division of Chase Corporation

John Waryold, HumiSeal Division of Chase Corporation

Rudiger Dietrich, Lackwerke Peters GmbH & Co KG

Michael Green, Lockheed Martin Space Systems Company

Hue Green, Lockheed Martin Space Systems Company

Richard Litavis, Paradign Inc.

Paula Vandenberg, Plasma Ruggedized Solutions

Richard Kraszewski, Plexus Corporation

Bill Barthel, Plexus Manufacturing Solutions

Amy Hagnauer, Raytheon Company

Bill Vuono, Raytheon Company

Fonda Wu, Raytheon Company

Martin Scionti, Raytheon Missile Systems

Nate Grinvalds, Rockwell Collins

Douglas Pauls, Rockwell Collins

Gordon Sullivan, Royal Adhesives & Sealants

Stephen Craig, Shin-Etsu Silicones of America, Inc.

Kim Atkins, Specialized Coating Services

Rick Ramirez, Specialized Coating Services

Stephen Meeks, St. Jude Medical

Debora Obitz, Trace Laboratories - Baltimore

John Radman, Trace Laboratories - Denver

Bruce Hughes, U.S. Army Aviation & Missile Command

Bhanu Sood, University of Maryland Ray Simon

Sal Sparacino, ZESTRON America Umut Tosun, ZESTRON America IPC-HDBK-850 July 2012

This Page Intentionally Left Blank

July 2012 IPC-HDBK-850

Table of Contents

1 SC	OPE	1	3.3.6	Q-Resonance	23
1.1	Introduction	1	3.3.7	Dielectric Constant and Dissipation Factor	23
1.2	Purpose	1	3.4	Processing Characteristics	23
1.3	Scope	1	3.4.1	Viscosity	23
1.4	Terms and Definitions	1	3.4.2	Thixotropy	24
1.4.1	Material Terms and Definitions	2	3.4.3	Curing Exotherms	25
1.4.2	Application Terms and Definitions	4	3.4.4	Work Time (Pot Life)	25
2 AP	PLICABLE DOCUMENTS	14	3.5	Selecting a P/E Material	25
2.1	ASTM		3.5.1	Select with End Environment in Mind	25
2.2	IPC Standards		3.5.2	Design for Encapsulation Application	25
2.3	Joint Industry Standard		3.5.3	Design Philosophy	26
2.4	Military Standards		3.6	Qualifying a P/E Material	27
2.5	Underwriters Laboratories		3.6.1	Vendor's Data Sheet	27
2.6	British Standards (DSTAN, UK Defense	10	3.6.2	Compatibility with Process Materials	27
2.0	Standardization)	15	3.6.3	Residues Related to PCB and Components	27
2.7	IEC Standards	15	3.6.4	Component Material Types	28
2.8	Federal Standards	15	4 ELE	ECTRICAL CONSIDERATIONS	30
3 P/E	MATERIALS	15	4.1	High Voltage (HV)/High Current (HC)	
3.1	Chemistry Types		4.2	RF and Microwave	
3.1.1	Polyurethane and Polysulfide		4.3	High Speed Digital	
3.1.2	Epoxy		4.4	Controlled Impedance	
3.1.3	Acrylics		4.5	EMI/ESD	
3.1.4	Silicone		4.5.1	EMI (Electromagnetic Interference)	
3.1.5	UV/Visible Light Cure		4.5.2	ESD (Electrostatic Discharge)	
3.1.6	Others Chemistry Types		4.6	Encapsulation Coverage	
3.2	Discussion of Properties		4.7	Masking	31
3.2.1	Chemical Resistance		4.8	Drawings and Design Guidelines	
3.2.2	Thermal Characteristics		4.9	Chemical Susceptibility Testing	
3.2.3	Outgassing		4.10	Accelerated Aging Tests	32
3.2.4	Shrinkage/Residual Stress		4.11	Validating a P/E Material	32
3.2.5	Adhesion		4.12	Discussion of Material Properties and	
3.2.6	Coefficient of Thermal Expansion (CTE)			Dependence on Processing Methods	32
3.2.7	Hardness		4.12.1	Encapsulation Properties	32
3.2.8	Green Strength	20	4.12.2	Appearance/Color	32
3.2.9	Young's Modulus		4.12.3	Dielectric Properties	32
3.2.10	Glass Transition Temperature (T _g)		4.12.4	Dielectric Withstanding Voltage	32
3.3	Electrical		4.12.5	Dielectric Insulation Resistance	32
3.3.1	Insulation Characteristics		4.12.6	Dielectric Q-Resonance	32
3.3.2	Dielectric Properties		4.12.7	Dielectric Constant and Dissipation Factor	32
3.3.3	Dielectric Withstanding Voltage (DWV)		4.12.8	Thermal Properties	33
3.3.4	Insulation Resistance		4.12.9	Thermal Stability	33
3.3.5	Moisture and Insulation Resistance	23	4.12.10	Flammability	34
٠.٥.٥	(M and IR)	23	4.12.11	Flexibility	34
				•	

4.12.12	Abrasion Resistance	34	6.7	Nuclear Biological Chemical Warfare	
4.12.13	Hydrolytic Stability	34		Environment	42
4.12.14	Permeability	34	7 L	ONG TERM RELIABILITY AND TESTING	42
4.12.15	Chemical Compatibility and		7.1	Failure Mechanism	42
	Chemical Resistance		7.1.1	Wear/Abrasion	
	Chemical Resistance		7.1.2	Loss of Transparency/Discoloration	42
	Biological Compatibility		7.1.3	Cracking	42
	Vapor Resistance		7.1.4	Loss of Adhesion	42
	Corrosion Resistance		7.1.5	Bubbles	43
	Fungus Resistance		7.1.6	Blistering	43
4.12.21	UV Stability	36	7.1.7	Charring	43
4.12.22	Radiation Resistance	. 36	7.1.8	Degradation	
4.12.23	Outgassing	36	7.1.9	Chemical Attack	
5 RE	WORK AND REPAIR	. 36	7.2	Accelerated Testing	
5.1	Removal Methods		7.2.1	Test Parameters	
5.1.1	Chemical		7.2.2	Examples of Tests	44
5.1.2	Mechanical Abrasion		8 E	EQUIPMENT CONSIDERATIONS	44
5.1.3	Media Blasting		8.1	Mixing	44
5.1.4	Dry Ice Abrasion		8.1.1	Static Mix	44
5.1.5	Thermal Degradation		8.1.2	Dynamic Mixing	44
5.1.6	Laser		8.1.3	Spinning Mixers	44
5.1.7	Plasma		8.1.4	Pin Mixers	44
5.1.8	Combination Rework Methods		8.2	Dispensing	44
5.2	Cleaning after Stripping		8.2.1	Highly Filled Materials	44
5.3	Re-Encapsulation		8.2.2	Abrasivity of Fillers	45
5.4	Environmental, Health and Safety	. 50	8.2.3	Filler Selection	45
3.4	Rework and Repair Considerations	39	8.2.4	Maintenance Considerations	45
c EN	D USE ENVIRONMENT		8.2.5	Polyurethanes Containing Isocyanates	45
			8.2.6	Displacement System Size	45
6.1	Outdoor Environment		9 [DESIGN CONSIDERATIONS IN P/E	45
6.1.1	Ultraviolet (UV) Radiation		9.1	Intended Function in the End	
6.1.2	Humidity			Use Environment	45
6.1.3	Pollutant Gases		9.2	Residual Stress Effects on Components	45
6.1.4	Ozone		9.3	Sleeving	45
6.1.5	Acid Rain		9.4	LEDs	45
6.1.6	Marine and Coastal Environment		9.5	Inappropriate Uses of P/E Materials	46
6.2	Automotive		9.6	Part Geometries	46
6.3	Avionics Environment		10 F	NCLOSURE CONSIDERATIONS	
6.3.1	Aircraft on the Ground	41	10.1	Component Density	46
6.3.2	Equipment Outside the Pressure Containment Compartment During Operations	41	10.2	Clearances	
6.3.3	Equipment Inside the Pressure Contain-		10.3	Vent Holes	46
	ment Compartment During Operations	41	10.4	Surface Texture/Surface Energy of	
6.4	Space Environment	41		Enclosures/Substrates	46
6.5	Medical Environment	41	11	PREPARATION FOR P/E	46
6.6	Geothermal Environment	41	11.1	Material Storage	46

11.2	Substrate Preparation	46	13.10	.1 Exotherm	56
11.3	Surface Residues and Impact on P/E	47	13.11	Shrinkage	56
11.3.1	Residual Fluxes	47	13.12		
11.3.2	Adhesives	47		Entrapment	
11.3.3	Primers	47	13.13	Exceeding Cure Recommendations	57
11.3.4	Priming for Acrylics	48	14	APPLICATION PROCESS MONITORING	57
11.3.5	Priming for Urethane	48	14.1	Inspection Guidelines	57
11.3.6	Priming for Polysulfide	48	14.2	Monitoring a P/E Process	57
11.3.7	Plasma Treatment	48	14.2.1	Workmanship	57
11.3.8	Mechanical Etching	49	14.2.2	2 Oven Profiling	57
11.4	Masking	49	14.2.3	3 Volumetric Shot Size	57
11.4.1	Types of Masks	49	14.2.4	Weight	57
11.4.2	Manual vs. Automated Masking	50	14.2.5	Hardness	57
11.5	Preheats	50	15	ENVIRONMENTAL, HEALTH AND SAFETY	
11.6	Molds and Containers	50		PROCESSING CONSIDERATIONS	58
11.6.1	Waxes	50	15.1	Environmental Health and Safety Viscosity	
11.6.2	Porous Containers	50		Adjustment	58
11.6.3	Mold Release Agents	50	15.2	Curing Ventilation Considerations	58
11.7	Mixing and Preparing Materials		15.3	Workplace Considerations	58
11.7.1	Hand Mixing (Cups)		15.4	Exotherms Dependent on Volume	
11.7.2	Automated Mixing on the Fly			of Material	58
11.7.3	Proper Mix Ratio		16	INHIBITION	58
11.7.4	Vacuum Degassing of Mixed Materials		16.1	Interfacial Inhibition	59
10 D			16.2	Mild Inhibition	59
12 D 12.1	ISPENSING		16.3	Gross Inhibition	59
	Pouring		16.4	Location of Inhibition	59
12.1.1	Positive Displacement Piston Metering		16.5	Causes of Inhibition	59
12.1.2	Injection Molding		16.6	Compatibility Check List	59
12.1.3	Dipping		16.7	Adhesion	60
12.1.4	Brushing		16.8	Solder Mask/Substrate	60
12.1.5	Spraying		16.9	Components	60
12.1.6	Dispensing Under Vacuum		16.10		· ':
12.2	After Dispensing		16.11		
12.2.1	Degassing the Assembly		16.12		
12.2.2	Wait Periods and Exotherms	54			
13 C	URE MECHANISMS			POTTING/COATING OVER ENCAPSULANTS	
13.1	Heat Cure	55	17.1	Mixed Hardness Systems	
13.2	Heat Accelerable	55	17.2	Interlayer Adhesion	
13.3	Vacuum Bake	55	17.3	Compatibility with Process Materials	61
13.4	Under Pressure	55	18	MATERIALS RELATED TO LEAD FREE	
13.5	Humidity	55		PROCESSING THAT AFFECT P/E	62
13.6	Room Temperature Cure	55	18.1	Materials that Leach from Substrates	<i>(</i> 2
13.7	UV/Visible Light	55	10.2	at Higher Temperature	
13.8	Catalytic Cure	56	18.2	Changes in Surface Energy of Substrates	
13.9	Cure Process Considerations	56	18.3	Glycols from Solder Masks	
13.10	Cure By-Products	56	18.4	Flux/Paste Residues are More Aggressive	62