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– repair team dependency: if several blocks are repaired by the same repair team, then a 
failing block has to wait to be repaired if the repair team is busy with another failed 
block. This constitutes a functional dependency which can be modelled as illustrated in 
Figure 48; 

– collective repair: several blocks are repaired within the same repair operation; 

– standby redundancy: when the active block fails, this starts the standby block (see 
Figure 11); 

– spare parts: when an active block fails, the repair may need to use some spare parts. 
Therefore, the repair is possible only if one spare part is available. In addition, the 
spare part used to repair one block becomes unavailable to repair another block; 

– blocks in series: when one of the blocks in series fails or is under repair, the others 
may be stopped (e.g. because the output of the failed block is needed for later blocks 
in the series).  

–  etc. 

• Events able to occur only in a given order (an event cannot occur before another one has 
occurred):

– the repair of a block cannot start before the block has failed. Such functional 
dependency has been already handled with ordinary RBDs for availability, reliability 
and frequency calculations; 

– for a given set of blocks (B1,B2, ..., Bn), the repair starts only when all of them have 
failed; 

– the blocks become non-repairable after the whole system has failed. This is what 
happens when reliability calculations are performed; 

– more generally, for a set of events (e1, e2, ..,en), this implies that e2 cannot occur as 
long as e1 has not occurred, that e3 cannot occur as long as e2 has not occurred, ..., 
that en cannot occurs as long as en-1 has not occurred. In other words, e1 is inhibited by 

2e , e2 is inhibited by 3e , ..., en is inhibited by 1−ne . Therefore, the events can only 

occur in the sequence e1, e2, ..,en. This may be the case when an electrical device 
cannot be started before the electrical power is switched on or when a cold standby 
device cannot be activated before the failure of the active device. This interaction is 
similar to sequential gates (often noted SEQ) found in dynamic fault tree analysis (see 
the SEQ gate in Table 4); 

– etc. 

12.2.3 Systemic dynamic interactions 

Those interactions do not necessarily imply functional dependencies between the blocks 
which may behave independently from each other. They occur when the ordinary logical rules 
cannot be used.  

Examples are the following: 

• m/n majority vote: this logical configuration has already been analysed (see 7.5.1 and 9.4) 
and a special logical gate has been introduced to model it. 

• Events which shall occur in a given order:  

– demand triggering an action performed by a given block B: if the demand occurs before 
B has failed, the action is performed and the system remains in up state, if the demand 
occurs after B has failed, the action is not performed and the system fails; 

– isolation valve protecting a system against overpressure: a hazardous event occurs 
only if the valve is opened before the pressure has been dropped down upstream the 
isolation valve; 

– more generally, for a set of events e1, e2, ..,en , the output is produced only if the 
events occur in this given order, otherwise no output is produced. This interaction is 
similar to the "priority" AND gates (often noted PAND) found in dynamic fault tree 
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analysis and which can also be used for DRBDs. This may be represented as a gate 
combining the input of several blocks. 

Special gates are needed to represent the systemic dynamic dependencies as, for example, 
the m/n and the PAND or SEQ gates presented in Table 4 and which are popular extensions of 
dynamic fault trees. 

The m/n gate has already been analysed and PAND and SEQ gates are analysed hereafter 
(see Figure 49 to Figure 52). The symbols usually implemented in dynamic fault trees have 
been used here but NOT gates have been inserted in inputs and outputs in order to keep the 
coherence with regards to the RBD logic.  

12.2.4 Graphical representations of dynamic interactions 

As said in 12.2.2 and 12.2.3, the kinds of possible dynamic interactions are virtually endless. 
Therefore, even if some attempts have been made (see references [15], [16] and [17]) to 
propose graphical symbols for specific cases, this does not cover all the cases and only some 
basic graphical elements can be proposed in this standard. 

Figure 46 – Dynamic interaction between a CCF and RBDs' blocks 

Figure 46 shows the strong interactions (i.e. strong functional dependencies) between an 
external element and some blocks: blocks A and B fail when the common cause failure 
represented by the external block CCF occurs. 

Figure 47 – Various ways to indicate dynamic interaction between blocks  

Figure 47 shows two ways to represent the interaction (i.e. functional dependencies) between 
blocks: the state of blocks C and D depends on the state of block A. 

The same mechanisms have been implemented in Figure 48 to represent the interaction 
between the single repair team and the repaired blocks. 
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Figure 48 – Dynamic interaction between a single repair team and RBDs' blocks   

These simple graphical representations aim only at indicating that there is some dynamic 
interaction between the blocks and the external elements. The dotted lines on the left hand 
side of Figure 47 and Figure 48 can be used when only few interactions have to be 
represented in an RBD. When there are many interactions to be represented, the proposal on 
the right hand side of Figure 47, Figure 46 and Figure 48 is clearer. The very nature of the 
interactions themselves should be specified elsewhere. The main use of these 
representations is to support the graphical presentation of the RBD and to ensure that the 
external elements are well identified. 

Figure 49 shows how a PAND gate can be used within a DRBD: the output O goes to the 
down state only if I1 goes to the down state before I2 goes to the down state. 

Figure 49 – Implementation of a PAND gate  

The functioning of the PAND gate is illustrated in Figure 50. The PAND gate is equivalent to 
the 5 states of the finite-state automaton drawn on the left hand side of the figure. 

– State 1: I1 and I2 are in up state. Then the output O is in the up state. 

– State 2: I2 has gone to the down state first and I1 is still in the up state. Then the output O
is in the up state. 

– State 3: I1 has gone to the down state first and I2 is still in the up state. Then the output O
is in the up state. 

– State 4: I1 and I2 have gone to the down state but I2 has gone first. Then the output O is in 
the up state. 

– State 5: I1 and I2 have gone to the down state but I1 has gone first. Then the output O has 
gone to the down state. 
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Figure 50 – Equivalent finite-state automaton and example 
of chronogram for a PAND gate  

Then, when the input I1 and I2 varies between 1 and 0, the output of the PAND gate  
(Figure 49) changes according to the rules presented by this finite-state automaton. This 
gives, for example, the chronogram presented on the right hand side of Figure 50. A Petri net 
modelling the same finite-state automaton is analysed in Annex E and Figure E.6. 

Figure 51 shows how a SEQ gate can be used within a DRBD: as for the PAND gate, the 
output O goes to the down state only if I1 goes to the down state before I2 goes to the up 
state. The difference is that I2 cannot go to the down state before I1 has gone to the down 
state first. Therefore, the failure of B and D are inhibited as long as I1 is in up state and this is 
indicated thanks to the dynamic interactions drawn in dotted lines.  

Figure 51 – Implementation of a SEQ gate  

The functioning is illustrated in Figure 52. The SEQ gate is equivalent to the 5 states finite-
state automaton drawn on the left hand side of the figure. The states are the same as for the 
PAND gate except that there is no transition from state 1 to state 2 in order to force the order 
of the failures: I1 first, then I2. 

Figure 52 – Equivalent finite-state automaton and example 
of chronogram for a SEQ gate  

As shown in the chronogram, I2 cannot fail before I1 has previously failed. 

A Petri net modelling the same finite-state automaton is analysed in Annex E, Figure E.6 and 
Figure E.7. 
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12.2.5 Probabilistic calculations 

Making the probabilistic calculation by using the Markovian approach is proposed in literature 
(see references [2], [29] and [30]). Nevertheless, building a Markov process for a whole DRBD 
is quickly limited by the combinatorial explosion of the number of states. Therefore, this 
approach should be restricted to small independent parts of the DRBD as this has been done 
for the RBD driven Markov processes described in Clause C.4. 

Another approach which is proposed in literature is to make the link between DRBDs and 
finite state automata (state-events machine or Petri net). This is more effective than the 
markovian approach but the analytical calculations are no longer possible and Monte Carlo 
simulation has to be implemented. 

The RBD driven Petri nets described in Annex E are an effective way to mix the RBD and PN 
approaches in order to deal with dynamic RBDs problems and calculations. 
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Annex A 
(informative) 

Summary of formulae 

Warning: The formulae presented in Table A.1 are intended to be used by users aware of the 
underlying hypothesis and mathematics and of the limitations when approximations are 
implemented.   

NOTE In Table A.1, frequent use is made of the terms “active” and “standby”. The former is used to indicate that 
the blocks concerned (each of which can consist of a component, sub-system, system, etc.) are energized 
(powered-up) and hence are liable to failure. The latter on the other hand is used to indicate that the block or 
blocks concerned are de-energized (powered-down) and not liable to failure. 

Table A.1 – Example of equations for calculating the probability 
of success of basic configurations  

Basic configuration Equation for system P
S
, R

S
(t), A

S
(t) 

1 Series structures 

A General case

Constant probabilities:  

nPPPP K21s ⋅=

Time dependent probabilities:  

)()()()( 21s tRtRtRtR nK⋅=

)()()()( 21s tAtAtAtA nK⋅=

B With PPPP n === K21
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PP =s

C With )()()()( 21 tRtRtRtR n === K

=> n
tRtR )()(s =

D With )()()()( 21 tAtAtAtA n === K

=> n
tAtA )()(s =

2 Parallel structures 

Active A Active general case

Constant probabilities: 

)1()1()1(1 21s zPPPP −−⋅−−= K

Time dependent probabilities: 

)(s tR : no simple general formula (see NOTE 1)
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Basic configuration Equation for system P
S
, R

S
(t), A

S
(t) 
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Basic configuration Equation for system P
S
, R

S
(t), A
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(t) 
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Basic configuration Equation for system P
S
, R
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5 Parallel-series structures
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NOTE 3 Formulae for standby systems are based on the assumption that the reliability of switching and sensing 
mechanisms is 100 % (P
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= 1). 
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Annex B 
(informative)

Boolean algebra methods 

B.1 Introductory remarks 

Apart from the use of Boolean truth tables (see 11.4) and binary decision diagrams (see 11.5), 
the analysis of RBDs as described so far makes use mainly of conventional algebraic 
mathematical formulae. However, Boolean algebra in general can also be used for such 
analyses, and in many instances is much more efficacious and straightforward. In particular, 
the use of Boolean algebra may well be the most straightforward approach whenever 

a) RBDs contain repeated blocks (see Figure 37), 

b) RBDs contain directional arrows (see Figure 10 and Figure 35), 

c) the system is particularly complicated, 

d) it is easier to construct a Boolean expression for system success (or failure) than it is to 
construct an RBD, 

e) the system comprises a number of blocks too large to be tractable by simple formulae.  

Item d) of the above list is worthy of note. For many systems and networks the listing of 
equipment success (or failure) combinations in Boolean terms is often a more straightforward 
task than the construction of the corresponding RBD. By employing at the outset the Boolean 
approach to analyse the system, the risk of making errors in the course of constructing the 
RBD is entirely avoided. 

Item e) of the above list may be related to RBDs modelling industrial systems with a dozen of 
components and leading to the combinatorial explosion of the terms to be taken into account 
in the formulae. This is particularly crucial when numerous repeated blocks also have to be 
managed.  

B.2 Notation 

The conventional symbols ∪  and ∩  denoting the logical “OR” and “AND” play for the Boolean 

algebra the same role as the addition (+) and of the multiplication (·) for ordinary algebra. This 

is why, in what follows, it has been found more convenient, to use a ”+” symbol to denote 

logical “OR” and a full stop "•" to denote logical “AND”2. As usual a bar over a Boolean 

variable will denote the inverse or complement of the variable concerned: e.g. a  is interpreted 

as “not a ”. For example gfecba •+•••  is to be interpreted “a AND b AND NOT c AND e OR 

f AND g“. The context in which the symbols are used should make the meaning clear. 

_______________ 

2  The advantage of such a notation becomes apparent in Annex B where expressions of the type 

dcbadcadebadeabeaba •••+••+•••+••+••+•=S  are frequently found. Taking this latter expression 

as an example and writing it using set theory symbols, one obtains: 

dcbadcadebadeabeaba ∩∩∩∪∩∩∪∩∩∩∪∩∩∪∩∩∪∩=S  which for many readers may be quite 

difficult to interpret or evaluate.  
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